Metabolic Adaptations of White Lupin Roots and Shoots under Phosphorus Deficiency
نویسندگان
چکیده
White lupin (Lupinus albus L.) is highly adapted to phosphorus-diminished soils. P-deficient white lupin plants modify their root architecture and physiology to acquire sparingly available soil phosphorus. We employed gas chromatography-mass spectrometry (GC-MS) for metabolic profiling of P-deficient white lupins, to investigate biochemical pathways involved in the P-acquiring strategy. After 14 days of P-deficiency, plants showed reduced levels of fructose, glucose, and sucrose in shoots. Phosphorylated metabolites such as glucose-6-phosphate, fructose-6-phosphate, myo-inositol-phosphate and glycerol-3-phosphate were reduced in both shoots and roots. After 22 days of P-deficiency, no effect on shoot or root sugar metabolite levels was found, but the levels of phosphorylated metabolites were further reduced. Organic acids, amino acids and several shikimate pathway products showed enhanced levels in 22-day-old P-deficient roots and shoots. These results indicate that P-deficient white lupins adapt their carbohydrate partitioning between shoot and root in order to supply their growing root system as an early response to P-deficiency. Organic acids are released into the rhizosphere to mobilize phosphorus from soil particles. A longer period of P-deficiency leads to scavenging of Pi from P-containing metabolites and reduced protein anabolism, but enhanced formation of secondary metabolites. The latter can serve as stress protection molecules or actively acquire phosphorus from the soil.
منابع مشابه
The effects of nitrogen form on root morphological and physiological adaptations of maize, white lupin and faba bean under phosphorus deficiency
Root morphological/physiological modifications are important for phosphorus (P) acquisition of plants under P deficiency, but strategies differ among plant species. Detailed studies on the response of maize roots to P deficiency are limited. Nitrogen (N) form influences root morphology/physiology, and thus may influence root responses to P deficiency. This work investigated adaptive mechanisms ...
متن کاملNitrogen fixation by white lupin under phosphorus deficiency.
BACKGROUND AND AIMS White lupin is highly adapted to growth in a low-P environment. The objective of the present study was to evaluate whether white lupin grown under P-stress has adaptations in nodulation and N2 fixation that facilitate continued functioning. METHODS Nodulated plants were grown in silica sand supplied with N-free nutrient solution containing 0 to 0.5 mm P. At 21 and 37 d aft...
متن کاملNitric oxide is the shared signalling molecule in phosphorus- and iron-deficiency-induced formation of cluster roots in white lupin (Lupinus albus).
BACKGROUND AND AIMS Formation of cluster roots is one of the most specific root adaptations to nutrient deficiency. In white lupin (Lupinus albus), cluster roots can be induced by phosphorus (P) or iron (Fe) deficiency. The aim of the present work was to investigate the potential shared signalling pathway in P- and Fe-deficiency-induced cluster root formation. METHODS Measurements were made o...
متن کاملAn RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants.
Phosphorus, in its orthophosphate form (P(i)), is one of the most limiting macronutrients in soils for plant growth and development. However, the whole-genome molecular mechanisms contributing to plant acclimation to P(i) deficiency remain largely unknown. White lupin (Lupinus albus) has evolved unique adaptations for growth in P(i)-deficient soils, including the development of cluster roots to...
متن کاملMolecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin.
White lupin (Lupinus albus) grown under P deficiency displays a suite of highly coordinated adaptive responses. Included among these is secretion of copious amounts of acid phosphatase (APase). Although numerous reports document that plants secrete APases in response to P deficiency, little is known of the biochemical and molecular events involved in this process. Here we characterize the secre...
متن کامل